
Energy Regulation, Household Welfare And Income Inequalities: Distributional Analysis of Short-term Effects

Milan Ščasný

Charles University Prague Environment Center

Czech-Austrian Energy Expert Group Seminar on "Implementing The 2020 Energy And Climate Package" Charles University Prague, 16 April 2009

Outline of the presentation

- 1. Methodology
- 2. Our Research (method, data)
- 3. The Results
- 4. Concluding Remarks

Methodology Incidence Measurement

- Completely unresponsive demands
 - change in expenditures without behavior change \rightarrow 'naïve' approach
 - see the assessment of Czech ETR by Starý et al. (2006); Arthur D Little (2006)

$$\sum_{k} (p_{ik}^{0} - p_{ik}^{1}) x_{ik}^{0} + Y_{i}^{1} - Y_{i}^{0}$$

- Change in consumer surplus
 - before-tax expenditures, change in P and Y, own-price elasticities

$$\Delta CS_{i} = \sum_{k} \left\{ \frac{x_{ik}^{o} p_{ik}^{0}}{\varepsilon_{ik} + 1} \left[1 - \left(\frac{p_{ik}^{1}}{p_{ik}^{0}}\right)^{\varepsilon_{ik} + 1} \right] \right\} + Y_{i}^{1} - Y_{i}^{0}$$

- · Change in compensating/equivalent variations
 - compensated (Hicksian demand) own-price as well as cross-price elasticities
 - \rightarrow need to estimate household demand

Methodology Household Demand Analysis

Energy demand is 'derived' demand

- close connection between energy consumption and relevant durables
- search for dynamic and structural models of household demand
- a two-step decision process modelled jointly (Dubin and McFadden 1984; Hanemann 1984; Vaage 2000)
 - the discrete choice of durables
 - > conditional on this choice, continuous choice how to use the stock

Other possible models

- dynamic optimalization model \rightarrow model development of expectations
- ignore the endowment as the stock and allocate investment over the durable lifetime
- assume implicit adjustment in the stock \rightarrow estimate long time series
- ad hoc empiric specification of dynamic adjustment of the stock

Methodology Household Demand Analysis

- Linear Expenditure System based on the Stone-Geary demand utility function
 - subsistence level of consumption, γ_p irrespective of its price, p_p or the consumer's income, y

$$q_i = \gamma_i + \frac{\beta_i}{p_i} \left(y - \sum_j \gamma_j p_j \right)$$

• Almost Ideal Demand System (Deaton et Muelbauer 1980) with a quadratic (Banks, Bludell, Lewbel 1997) or semi-flexible form (Moschini 1998) --- AID system of simultaneous eq.'s

$$w_i = \alpha_{i0} + \sum_h \alpha_{ih} x_h + \varepsilon_i + \sum_j \gamma_{ij} \log(p_j) + \left[\beta_{i0} + \sum_h \beta_{ih} x_h\right] \log\left(\frac{y_j}{p_j}\right)$$

• direct/ inverse Translog (Christensen, Jorgenson, and Lau 1975)

The research

- To measure ex ante distributional effects of higher energy prices (e.g. due to taxation, EU ETS)
- To measure effect on income inequalities and progressivity
- To consider heterogeneity in households behaviour and consumption patterns
- To use micro-simulation model that allows to simulate effect in the Czech Republic

Household Demand Estimation Econometric model

Almost Ideal Demand System (Deaton & Muelbauer, 1980) estimated by Bruha & Scasny 2006 for the households in the Czech Republic

$$w_i = \alpha_{i0} + \sum_h \alpha_{ih} x_h + \varepsilon_i + \sum_j \gamma_{ij} \log(p_j) + \left[\beta_{i0} + \sum_h \beta_{ih} x_h\right] \log\left(\frac{y}{P}\right)$$

- the Stone index estimated by non-linear GMM

$$\log P = \alpha_0 + \sum_i \alpha_i \log p_i + \frac{1}{2} \sum_{i,j} \gamma_{ij} \log p_i \log p_j.$$

- two-stage Heckman-style correction (1979) of zero expenditures → the inverse Mills ratios entered to the AIDS's intercept
- potential endogeneity of prices corrected by instrumenting the consumer energy prices by world energy prices → little changes found

- the AIDS restricts **Engel curves to be linear** in the log of expenditures

- by a simple linear regression and by non-parametric approach
- with and without potential endogeneity corrections
 - > linear estims lay in 95% CI (by using a non-parametric bootstrap)

Household Demand Estimation Econometric model /2

- price responsiveness can differ among the households with different availabilities of and willingness to use the alternative
- household behaviour being analysed for various groups
 - income deciles/quintiles (e.g. West 2004; West and Williams 2004; Ščasný & Brůha 2003)
 - social status, number of children (e.g. Nichele and Robin 1995; Brůha & Ščasný 2004 → farmers, retired, empl.)
 - residential location (e.g. Brännlund and Nordström 2004)
- behaviour analysis for well specified household groups (still using micro data) allows to
 - \rightarrow more robust consumer behaviour estimates
 - \rightarrow overcome problem of zero expenditure occurrence

Household Demand Estimation Econometric model /2

- applying factor analysis we identify household groups assuming certain consumer pattern
 - \rightarrow type of heater
 - \rightarrow endowment with gas stew
 - \rightarrow expenditures on several types of energies

	ELEKTRINA	ELE cookGAS	HEAT cookELE	HEAT blocks	GAS heat	COAL heat
Energy % of expenses	0.09 (std 0.06)	0.13 (std 0.06)	0.12 (std 0.05)	0.12 (std 0.05)	0.12 (std 0.06)	0.10 (std 0.05)
Electricity	17 054	13 872	6 745	5 800	9 041	11 742
Gas	0	7 704	0	1 237	14 339	701 (12%)
Heat	0	0	12 893	14 829	0	0
Coal	0	0	0	52 (12%)	209 (20%)	6 360

Ex ante distributional analysis

- DASMOD micro-simulation model
 - responsiveness estimated by AID system (*Deaton & Muelbauer 1980*)
 → short-run elasticities
 - separately for overall each of 30 household groups (B&Š 2006)
 - revenue-recycling effects
 - predictions for each individual household in the sample
 - optimization (revenues=0, welfare=0, DWL=0)

• Model limitations

- restricted partial equilibrium effect
 - no GE effects, either 'top-down' method
 - only the first round effect (except the price of heat)
- no tax-interaction effect
 - the effect on S_L not estimated, i.e. cross-price elasticities assumed be zero

Elas	sticity	y est	imat	es						
	wn pric									
	electricity	gas	heat	solid fuels						
Household group classified according to the heat source (AIDS)										
ELECTRA	-0.52									
ELEcookGAS	-1.04	-2.26								
HEATcookELE	-0.25		-1.22							
HEATblocks	-0.32	-0.95	-0.84							
GASheat	-0.23	-0.94								
COALheat	-0.47			-0.11						
Average elasticity**	-0.324	-0.978	-0.938	-0.11						
Groups classified according t	o the social status and th	ne size of municipality	(AIDS)							
Weighted mean	-0.63	-0.47	*	-0.03						
Min among the groups	-0.45	-0.21	*	-0.03						
Household of farmers	-0.53	-0.42	*	*						
Households of pensioners	-0.73	-0.51	*	*						
Max among the groups	-0.84	-0.56	*	-0.03						
Income deciles (TS)										
Average- weighted	-0.30	-0.55	-0.48	n.a.						

Elasticity	Estimates
<< income e	lasticities >>

	electricity	gas	heat	solid fuels					
Household group classified according to the heat source (AIDS)									
ELECTRA	0.36								
ELEcookGAS	0.35	0.93							
HEATcookELE	0.28		0.24						
HEATblocks	0.39	-0.19	0.17						
GASheat	0.19	0.10							
COALheat	0.31			0.22					
Average elasticity**	0.296	-0.023	0.186	0.216					
Groups classified according to	o the social status and th	e size of municipality (AIDS)						
Weighted mean	0.90	0.76	0.71	0.66					
Min among the groups	1.08	0.91	0.95	0.94					
Household of farmers	0.97	0.82		0.89					
Households of pensioners	0.83	0.75	0.85	0.59					
Max among the groups	0.71	0.58	0.58	0.44					
Income deciles (TS)	·		•	•					
Average- weighted	1.06	0.97	0.47						

EC_min		Impa	ct on h	nouseh	olds		Publ	ic finar	nces
(S1)	expens	paid eco taxes	paid labor t	transfer	CV (CLI)	Welfare	public revenues	DWL	total revenues
Total for the CZ, in bln. CZK	-0.13	1.81	0.00	0.00	5.13	-5.13	1.83	3.30	1.83
1 2 3 4 5 6 7 8 9	51 -102 25 -63 -54 44 1 -78 -51	396 349 421 404 405 459 528 429 496	0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0	1 048 1 039 1 205 1 171 1 259 1 172 1 272 1 275 1 414	-1 048 -1 039 -1 205 -1 171 -1 259 -1 172 -1 272 -1 275 -1 414	388 365 417 414 414 452 528 441 504	661 674 788 757 846 720 745 834 910	388 365 417 414 414 452 528 441 504
10	-87	416	Ő	ů 0	1 344	-1 344	429	915	429
ELEKTRINA ELEcookGAS HEATcookGAS HEATblocks GASheat COALheat	134 -546 -1 319 325 -364 1 399	254 387 -87 130 706 1 439	0 0 0 0 0	0 0 0 0 0 0	276 577 1 358 1 593 914 1 378	276 577 1 358 1 593 914 1 378	-233 -474 -124 -78 -764 -1 216	44 103 1 234 1 515 150 163	233 474 124 78 764 1 216
farmer_small farmer_big	396 -135	839 652	0 0	0 0	931 1 117	931 1 117	-776 -674	156 443	776 674

E	X a	an	te	e a	an	al	ys	sis	5			
uits a	and G	Gini I	nde	xes f	for t	he ir	ncom	ies a	after	all ta	<u>xes</u>	
SIM1 = EC Directive 2003/96 SIM2 = SIM1 + revenue recycling <i>(labor tax cuts)</i> SIM3 = SIM1 + VAT change									regress ≈		inequal even	
SIM SIM SIM	4 = S 5 = S 6 = 2(7 = S	IM3 + IM3 w 0% in	reve ⁄ithou creas	nue r t elas e in e	ecycli sticitie energy	s, i.e. y & fu	ε _{ij} =0 el pric	es		regres prog		even ≈
0	. 0								ISI			
	coal CZK per	gas _{CZK per}	Excise tax heat CZK per	electr CZK per	fuels CZK per I	P heat CZK per	Value A Ta Standard	Added x Reduced	Elasti cities	Addit tax revenues bln. CZK	Revenue recycling	L(tax) credit CZK per year
2007		E gas	Excise tax heat	electr	fuels	P heat	Value A Ta	dded x	Elasti	revenues		Credit CZK per year
2007 SIM1	CZK per ton	gas CZK per GJ	Excise tax heat CZK per GJ	electr CZK per MWh	fuels CZK per I	P heat ^{CZK per} _{GJ}	Value A Ta Standard rate	Added X Reduced rate	Elasti	bln. CZK	recycling	credit CZK per year 7,200
	CZK per ton 0	gas CZK per GJ	xcise tax heat ^{CZK per} _{GJ}	electr CZK per MWh	fuels CZK per I 11.65	P heat ^{CZK per} GJ 362,5	Value A Ta Standard rate 19%	Added X Reduced rate	Elasti cities	revenues bln. CZK n.a.	recycling n.a.	credit <i>CZK per year</i> 7,200 7,200
SIM1	CZK per ton 0 170	gas ^{CZK per} 0 8.5	Excise tax heat ^{CZK per} GJ 0	electr CZK per MWh 0 28	fuels CZK per I 11.65 11.65	P heat CZK per GJ 362,5 368	Value A Ta Standard rate 19%	Added x Reduced rate 5%	Elasti cities estim	revenues bin. CZK n.a. 1.98	recycling n.a. none	стеdit <i>СZК рег уеаг</i> 7,200 7,200 7,721
SIM1 SIM2	CZK per ton 0 170 170	gas <i>СZК рег</i> <i>GJ</i> 0 8.5 8.5	Excise tax heat CZK per GJ 0 0	electr CZK per MWh 0 28 28	fuels CZK per I 11.65 11.65 11.65	P heat CZK per GJ 362,5 368 368	Value A Ta Standard rate 19% 19%	Added x Reduced 5% 5% 5%	Elasti cities estim estim	revenues bin. CZK n.a. 1.98 0	n.a. none tax credit	стеdit <i>СZК рег уеаг</i> 7,200 7,200 7,721 7,200
SIM1 SIM2 SIM3	CZK per ton 0 170 170 170 170	E gas ^{CZK per} GJ 0 8.5 8.5 8.5	Excise tax heat CZK per GJ 0 0 0 0	electr CZK per MWh 0 28 28 28 28	fuels CZK per I 11.65 11.65 11.65 11.65	P heat CZK per GJ 362,5 368 368 368 382	Value A Ta Standard 19% 19% 19%	Added X Reduced rate 5% 5% 5% 9%	Elasti cities estim estim estim	revenues bin. CZK n.a. 1.98 0 3.75	n.a. none tax credit none	стеdit <i>С2К рег уваг</i> 7,200 7,200 7,200 7,200 8,189 8,189
SIM1 SIM2 SIM3 SIM4	CZK per ton 0 170 170 170 170 170	E gas <i>CZK per</i> GJ 0 8.5 8.5 8.5 8.5 8.5	O 0 0 0 0 0 0 0 0 0 0	electr CZK per MWh 0 28 28 28 28 28 28	fuels CZK per 1 11.65 11.65 11.65 11.65 11.65	P heat CZK per GJ 362,5 368 368 382 382 382	Value A Ta Standard 19% 19% 19% 19%	Added x Reduced 5% 5% 5% 9% 9%	Elasti cities estim estim estim	revenues bln. CZK n.a. 1.98 0 3.75 0	n.a. none tax credit none tax credit	Credit C2K peryear 7,200 7,200 7,721 7,200 8,189 7,200 7,200 7,200

Ex ante analysis: Suits

Suits Index	Scenario										
ncome / liv min	Benchmark	SC1 S	SC2	SC3	SC4	SC5	SC6	SC7			
Labor income tax	0.382	0.382	0.397	0.382	0.411	0.382	0,382	0,53			
Insurance	0,002	0,002	0,007	0,002	0,411	0,302	0,002	0,00			
LABOR taxation	0,209	,	0,212	0,209	,	0,209	0,209	0,23			
ET fuel	0.043	0.043	0.043	0.043	0.044	0.043	0.043	0,04			
ET ener	0,040	-0,087	-0,040	-0,087	,	-0,087	-0,092	,			
VAT fuel	0.043		0.043	0.043		0.043	0,043				
VAT (public transport)	-0,049		-0,049	-0,049	,	-0,049	-0,049				
VAT (energie)	-0,087	-0,087	-0,087	-0,087	-0,086	-0,086	-0,087	-0,08			
ECO TAXES	-0,001	-0,005	-0,005	-0,007	-0,006	-0,008	-0,015	-0,00			
VAT food	-0,087	-0,087	-0,086	-0,087	-0,086	-0,087	-0,087	-0,08			
VAT rest	0,087	0,087	0,088	0,087	0,088	0,088	0,087	0,09			
VAT all	0,060	0,060	0,061	0,059	0,060	0,059	0,059	0,06			
TAX - total	0,141	0,140	0,141	0,139	0,142	0,139	0,133	0,14			

Gini Index				Scenari	0		
income / persons	Benchmark S	C1 S(C2 S	C3 S(C4 S	C5 S	C6
Labor income tax	-0,05	-0,05	-0,05	-0,05	-0,05	-0,05	-0,0
Insurance LABOR taxation	0,24 0,06	0,24	0,26	0,24 0,06	0,27 0,06	0,24	0,24 0,0
ET fuel	-0,13	-0,13	-0,13 -0,21	-0,13	-0,13 -0.21	-0,13	-0,1
ET ener VAT fuel	-0,20	-0,21 -0,20	-0,21	-0,21 -0,20	-0,21	-0,21 -0,20	-0,2 -0,2
VAT (public transport)	-0,22	-0,22	-0,22	-0.20	-0.20	-0.20	-0,2
VAT (energie)	-0,13	-0,13	-0,13	-0,13	-0,13	-0,13	-0,1
ECO TAXES	-0,15	-0,15	-0,15	-0,15	-0,15	-0,15	-0,1
VAT food	-0,22	-0,22	-0,22	-0,22	-0,22	-0,22	-0,2
VAT rest	-0,06	-0,06	-0,06	-0,06	-0,06	-0,06	-0,0
VAT all	-0,08	-0,08	-0,08	-0,09	-0,09	-0,09	-0,0
TAX - total	0,47	0,48	0,46	0,45	0,47	0,46	0,3
Gini	0,25						

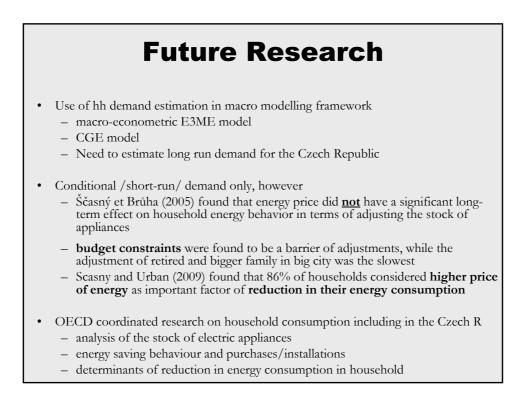
Ex ante analysis

- The revenue-recycling scenarios increase tax progressivity of the tax system
- labour taxation cuts overall slightly decreases the inequalities

Caveat:

- A particular labour tax cut considered
- Measures indicate aggregate results, not change in distribution in subgroups

Ex ante measurement 96/2003/EC implementation of minimal rates --- ECmin - regressivity of overall tax system increased - welfare reduced mostly in the first 2 deciles (more than Heat19) • ETR with revenue recycling via lowering of \rightarrow ETR_insur: the insurance payments from 12.5% down to 10.8% \rightarrow ETR_labour: the lowest rate lowered from 12.0% to 9.4% energy expenditures · increased mostly in ELEKTRINA, COALheat, bigger families and pensioners in rural • reduced in HEATcookGAS, EA1/EA1+ big and 3 highest deciles - welfare effects, in aggregate, are comparable for two variants, but • ETR_insur yields lesser regressivity in total (reduces in decile 1-4, 10) **Compensations as 100€**, if energy expenditures >25% of net income - increased energy expenditures of pensioners and EA1 in rural welfare improved for the pensioners and EA1 (decile 1-5) on detriment of EA2 and EA2+ (resp. decile 7-10)


50% higher excises on motor fuels more even impact; bigger impact on larger families in rural & farmers

Limitations & Future Research

- GE effects of energy price increase
 - separability of labour supply
 - What is the effect of increase in energy prices on labor supply (due to decrease of 'price' of leissure)?
 - feedbacks on prices
 - ongoing research (re-estimation of the AID system, include COICOP, labor supply effects, link to GE model)
- Other non-financial effects
 - benefit of unemployed from being employed
 - environmental/health benefit from improvement of environmental quality
 - ...both likely more distributed in low-income household groups

Conclusions

- AIDS estimation for appropriately chosen hh groups allows to better identify specific behaviour → more precise predictions on household welfare changes
 - e.g. the impact on expenditures varies between -0.16% to +0.22% for deciles, but it ranges between -2.33% and +2.06% for "energy-groups"
- Policy design will have effect on consumption, the environment, and also efficiency (DWL)

Milan Ščasný <u>milan.scasny@czp.cuni.cz</u> Charles University Prague, Environment Center U Krize 8, 158 00 Prague 5, Czech Republic

Thank you for your attention